The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition.

نویسندگان

  • Britta Brügger
  • Catriona Graham
  • Iris Leibrecht
  • Enrico Mombelli
  • Angela Jen
  • Felix Wieland
  • Roger Morris
چکیده

Glycosylphosphatidylinositol-anchored prion protein and Thy-1, found in adjacent microdomains or "rafts" on the neuronal surface, traffic very differently and show distinctive differences in their resistance to detergent solubilization. Monovalent immunogold labeling showed that the two proteins were largely clustered in separate domains on the neuronal surface: 86% of prion protein was clustered in domains containing no Thy-1, although 40% of Thy-1 had a few molecules of prion protein associated with it. Only 1% of all clusters contained appreciable levels of both proteins (</=3 immunogold label for both). In keeping with this distribution, immunoaffinity isolation of detergent-resistant membranes (DRMs) using the non-ionic detergent Brij 96 yielded prion protein DRMs with little Thy-1, whereas Thy-1 DRMs contained approximately 20% of prion protein. The lipid content of prion protein and Thy-1 DRMs was measured by quantitative nano-electrospray ionization tandem mass spectrometry. In four independent preparations, the lipid content was highly reproducible, with Thy-1 and prion protein DRMs differing markedly from each other and from the total DRM pool from which they were immunoprecipitated. Prion protein DRMs contained significantly more unsaturated, longer chain lipids than Thy-1 DRMs and had 5-fold higher levels of hexosylceramide. The different lipid compositions are in keeping with the different trafficking dynamics and solubility of the two proteins and show that, under the conditions used, DRMs can isolate individual membrane microenvironments. These results further identify unsaturation and glycosylation of lipids as major sources of diversity of raft structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionally different GPI proteins are organized in different domains on the neuronal surface.

We have investigated the organization, on the plasma membrane and in detergent-insoluble membrane vesicles, of two neuronal glycosylphosphatidylinositol-anchored (GPI) proteins: Thy-1, a negative regulator of transmembrane signalling; and prion protein, whose rapid endocytosis and Cu(2+) binding suggest that it functions in metal ion uptake. Prion protein occurred on the neuronal surface at hig...

متن کامل

The mode of anchorage to the cell surface determines both the function and the membrane location of Thy-1 glycoprotein.

The surface glycoprotein, Thy-1, when expressed by transfection in NG115/401L neural cells, inhibits their neurite outgrowth over astrocytes. We have investigated the role of the glycosylphosphatidylinositol anchor of Thy-1 in this inhibition. Hybrid molecules, in which the lipid anchor was replaced by polypeptide transmembrane domains, were expressed by transfection. Lines expressing Thy-1 wit...

متن کامل

N-Glycans and Glycosylphosphatidylinositol-Anchor Act on Polarized Sorting of Mouse PrPC in Madin-Darby Canine Kidney Cells

The cellular prion protein (PrP(C)) plays a fundamental role in prion disease. PrP(C) is a glycosylphosphatidylinositol (GPI)-anchored protein with two variably occupied N-glycosylation sites. In general, GPI-anchor and N-glycosylation direct proteins to apical membranes in polarized cells whereas the majority of mouse PrP(C) is found in basolateral membranes in polarized Madin-Darby canine kid...

متن کامل

Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition.

The failure of most non-ionic detergents to release patches of DRM (detergent-resistant membrane) at 37 degrees C undermines the claim that DRMs consist of lipid nanodomains that exist in an L(o) (liquid ordered) phase on the living cell surface. In the present study, we have shown that inclusion of cations (Mg(2+), K(+)) to mimic the intracellular environment stabilizes membranes during solubi...

متن کامل

Saponin-induced release of cell-surface-anchored Thy-1 by serum glycosylphosphatidylinositol-specific phospholipase D.

A glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) was purified from human serum and used for studies on the release of GPI-anchored Thy-1 glycoprotein from mouse T lymphoma cells Y191. Previous studies have shown that whereas GPI-PLD is highly active against detergent-solubilized GPI-anchored proteins, it is normally unable to release GPI-containing proteins anchored in a lipid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 9  شماره 

صفحات  -

تاریخ انتشار 2004